Phytoplankton pigments in oceanography

Jeffrey, Mantoura & Wright eds., 1997

Evaluation of methods and solvents for pigment extraction

Wright *et al.*, 1997

Sonication

• Sonication in dimethyl formamide gave the best pigment extraction of all protocols tested and may thus be regarded as the 'Reference' extraction method.

• Sonication in methanol appears to be a practical alternative to DMF.

Soaking

• Soaking without mechanical disruption should not be used as an extraction method since recovery is low, variable, and always accompanied by degradation products.

Freezing

• Freezing of the sample before extraction did not appear to increase extractability, and the effect on chlorophyllase activity depended markedly on the subsequent extraction technique.

Acetone

• For spectrophotometric analysis, acetone may still be used to extract pigments from diatoms and naked flagellates, since there are accurate simultaneous equations for Chls *a*, *b*, and *c* in this solvent (Jeffrey & Humphrey, 1975).

Methanol and DMF

• Porra *et al*. (1989) published equations for Chls *a* and *b* in both methanol and DMF allowing use of these solvents for green algae or other samples where Chl *c* is not present.

Filtration and storage of pigments from microalgae

Mantoura et al., 1997

Glass-fiber - Advantages

- High filtration capacity and rates.
- Insoluble in pigment-extracting solvents.
- GF/F retains >94% of picoplankton, Synechococcus sp., Prochlorococcus sp., and picoeukaryotes.
- Aids cell disruption.
- Less expensive than membrane filters.
- Compatible with HPLC, TLC and elemental (C, H, N) analyses.

Glass-fiber – Disadvantages

• Broad size cut-off.

• Unsuitable for size-fractionation.

Membrane – Advantages

- Available in wide range of narrow pore sizes (0.01-10 μm).
- Suitable for size-fractionation of phytobiomass and production.
- Compatible with SP, SF, fluorometry and gravimetry.

Membrane – Disadvantages

- Low filtration capacity and rates.
- Cellulose-ester filters dissolve in pigmentextracting solvents; therefore unsuitable for HPLC, TLC.
- Nucleopore polycarbonate filters release dyes that interfere with HPLC.
- More expensive than glass-fiber filters.

MgCO₃ addition

- Advantages:
- Buffers pH, improves particle retention.

- Disadvantages:
- Absorbs chlorophyllides and phaeophorbides.
- Retards filtration.

Recommendations on filters and storage

• Whatman GF/F (0.7 μ m) or equivalent filters are recommended for most sampling procedures in which pigments are analyzed by TLC or HPLC.

-196°C (Liquid nitrogen)

• Storage of filters of phytoplankton under liquid nitrogen (-196°C) is recommended for the preservation and recovery of pigments from filtered samples for up to 328 days.

-90°C (Ultra-cold freezer)

• Storage of filters in an ultra-cold freezer (-90°C) achieves excellent pigment recoveries with minimum degradation for at least 60 days.

-20°C (deep freezer)

• Long-term storage of phytoplankton filters at -20°C is not recommended, but if storage is short-term (not more than one week) good pigment recoveries with minimum degradation of Chl *a* may be obtained.

Freeze-drying $(+22^{\circ}C)$

• Freeze-drying causes rapid loss and extensive degradation of Chls and carotenoids in filters of all microalgae tested: about 25% loss in 1 day and at least 80% loss in 328 days.

Degradation during storage

• Whenever Chl a was lost during storage, chlorophyllide a, Chl a allomers and epimers were consistently the most prominent and diagnostic degradation products of inadequate treatment.

Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis

Mantoura et al., 1997

SCOR-UNESCO

• Intercalibration of Lorenzen and Jeffrey (1980) set a benchmark for objective comparisons by using analytically pure pigment standards and mixtures to test the accuracy of several spectrophotometric and fluorometric methods.

SCOR WG78

- Comparisons between HPLC and one fluorometric and three spectrophotometric methods tested on 11 mixtures of pure chlorophylls and derivatives, 29 microalgal extracts, and 14 seawater and sediment samples.
- HPLC method was first validated against the primary mixture of pure pigments, then used for the spectrophotometric and fluorometric method comparison.

Conclusions

• Determination of Chl *a* in simple pigment mixtures and extracts free of Chl degradation products is accurately done using the JH spectrophotometric method (<5% error) and the H-H fluorometric method if Chl *b* is absent.

• Acid-spectrophotometric and fluorometric methods for Chl *a* of L and H-H reduce, but do not eliminate, interference from phaeophytins and phaeophorbides.

• Welschmeyer's (1994) optical improvements to the H-H fluorometric method were not tested here, but seem to significantly reduce interference from Chl *b* and pheopigments and increase the fluorometric selectivity for Chl *a*.

• Since the spectra of chlorophyllide *a* and *b* are identical to Chl *a* and *b*, they cannot be distinguished from their parent Chls by either spectrophotometry or fluorometry, unless a phase separation step is included.

- In practice, a limited number of representative samples must first be screened by TLC or HPLC to ensure the absence of interfering degradation products.
- Thus the advantages of pigment spectroscopy in terms of simplicity, accuracy, cost and throughput can be fully realized.
- However, the only methods that can accurately assess all Chls in the presence of degradation products are separation techniques such as TLC and HPLC.

Guidelines for collection and pigment analysis of field samples

Wright & Mantoura, 1997

Matching the method to the question

- The concentration of pigments in phytoplankton provides a measure of the phytoplankton biomass.
- This information is valuable for oceanographers, fisheries and water management authorities, and environmental agencies.
- The types of data required varies from an 'approximate' measurement of Chl *a* to a full analysis of chlorophylls, carotenoids and degradation products.
- The aim may be to produce surface maps, vertical profiles, time series, grazing or sedimentation profiles, pigment mass balances and so on.
- The choice of method depends on the type of data required, the type and number of samples, and the equipment and time available.

In vivo fluorometry

- Approximate Chl a only.
- < 1 min.
- 15 ml.
- Immediate data; sensitive.
- Not quantitative; fluorescence signal depends not only on Chl concentration but also on species composition, time of day, accessory pigments, physiological status, fluorescence quenching.
- Interference from Chl derivatives.

Extracted fluorometry

- Accurate Chl a.
- 10 min.
- 20 ml.
- Very sensitive; accurate if no Chl b present; inexpensive.
- Interference from Chl derivatives.

Spectrofluorometry

- Accurate Chls a, b, c.
- 15 min.
- 50 ml.
- Very sensitive.
- Interference from Chl derivatives; needs continual calibration.

Spectrophotometry

- Accurate Chls a, b, c.
- 10 min.
- 500 ml.
- Accurate if no Chl derivatives present.

Thin-layer chromatography

- Chls a, b, c, carotenoids, degradation products.
- 60 min.
- 30,000 ml.
- 2-dimensional TLC gives very good resolution; inexpensive; excellent for pigment purification.
- Not suitable for routine analysis of oceanographic samples.

Isocratic HPLC

- Accurate Chls *a*, *b*, *c*, some carotenoids, degradation products.
- 25 min.
- 1000 ml.
- Good for major Chls; simpler and faster than gradient HPLC; suitable for shipboard use.
- Medium resolution permits analysis of simple samples only (*e.g.*, cultures or Chls only in field samples).

Gradient HPLC

- Accurate Chls a, b, c, carotenoids, degradation products.
- 40 min.
- 1000 ml.
- Excellent resolution and quantitation; very sensitive for low Chls and derivatives with fluorescence detection; suitable for shipboard use.
- Expensive to set up; time-consuming for sample preparation, analysis, and data workup (not shown in time estimate).

Collection of samples

- Opaque bottles, filtered immediately (<1 hr).
- Protect from light and warmth.
- Gently mixed before subsampling.

Removal of zooplankton

- Large zooplankton present significant problems for pigment analysis:
- Their lipids interfere with chromatography,
- A single organism may contain sufficient Chl in its gut to overwhelm the phytoplankton Chl.

Filtration

- A glass-fiber filter such as Whatman GF/F
 (0.7 μm) should be used for HPLC
 sampling.
- MgCO₃ should not be used as a filter aid since it preferentially absorbs chlorophyllides.

Storage of filtered samples

• Frozen in liquid N, may be kept for several days at -20°C, or for weeks at -90°C.

Fluorometry and spectroscopy of sample extracts

• Although sonication in methanol has been recommended for extraction for HPLC, spectrophotometric equations to correct for absorption by Chls *b* and *c* have not yet been developed for this solvent as they have been for 90% acetone.

Spectrophotometric and fluorometric equations in common use in oceanography Jeffrey & Welschmeyer, 1997

Summary

- Most of our current knowledge of phytoplankton distributions in the ocean is based on Chl analyses made by spectrophotometry and filter-fluorometry.
- Both techniques will continue to be used whenever simple assays for Chl *a* are required.

- Fluorometry offers significant advantages in sensitivity which result in its popularity in providing simple, low cost Chl *a* analyses in most ocean environments.
- All pigment assays, including fluorometric and HPLC techniques, will ultimately be referenced to spectrophotometric absorbance measurements and, in this regard, spectrophotometric techniques are indispensable.

• Where concentrations of accessory Chls are needed, the dichromatic and trichromatic spectrophotometric techniques can provide good accuracy for Chls a and b, a and c, and a, b, and c_1+c_2 , provided that sample absorbances are high and degradation products are absent (e.g., algal cultures).

- If accurate analyses of accessory Chls and degradation products are required, especially on natural field samples, then isocratic HPLC is recommended.
- If the full suite of Chls, carotenoids and Chl degradation products in field samples is required, then an HPLC method should be used.

• Fluorometric analysis of Chl *a* is accurate under conditions where Chl *b* is absent.

• The accuracy of estimated phaeopigment concentrations is questionable, especially under common conditions where the ratio Chl/phaeopigment is high.

- *In vivo* fluorometry provides the most convenient, but least accurate method of determining Chl *a*, and has become popular for studies involving long term monitoring and small-scale spatial distributions.
- Currently no substitute for *in vivo* fluorescence for rapidly mapping real-time, vertical and horizontal resolution in phytoplankton biomass over both temporal and spatial dimensions.